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In case-control studies of unrelated subjects, gene-based hypothesis tests consider whether any tested feature in a candidate
gene—single nucleotide polymorphisms (SNPs), haplotypes, or both—are associated with disease. Standard statistical tests
are available that control the false-positive rate at the nominal level over all polymorphisms considered. However, more
powerful tests can be constructed that use permutation resampling to account for correlations between polymorphisms and
test statistics. A key question is whether the gain in power is large enough to justify the computational burden. We
compared the computationally simple Simes Global Test to the min P test, which considers the permutation distribution of
the minimum p-value from marginal tests of each SNP. In simulation studies incorporating empirical haplotype structures
in 15 genes, the min P test controlled the type I error, and was modestly more powerful than the Simes test, by 2.1
percentage points on average. When disease susceptibility was conferred by a haplotype, the min P test sometimes, but not
always, under-performed haplotype analysis. A resampling-based omnibus test combining the min P and haplotype
frequency test controlled the type I error, and closely tracked the more powerful of the two component tests. This test
achieved consistent gains in power (5.7 percentage points on average), compared to a simple Bonferroni test of Simes and
haplotype analysis. Using data from the Shanghai Biliary Tract Cancer Study, the advantages of the newly proposed
omnibus test were apparent in a population-based study of bile duct cancer and polymorphisms in the prostaglandin-
endoperoxide synthase 2 (PTGS2) gene. Genet. Epidemiol. 2006. Published 2006 Wiley-Liss, Inc.y
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INTRODUCTION

The genetic case-control study is a leading
method to identify candidate genes associated
with the risk of complex diseases [Schork, 2002].
This design is particularly popular for diseases
with a comparatively late age-at-onset, including
many cancers. A single study can probe a large
number of single nucleotide polymorphisms
(SNPs), and the resulting multiple comparisons
problem has been widely recognized [Schork
et al., 2000; Emahazion et al., 2001]. To date, the
accumulating literature has demonstrated a high
prevalence of false-positive reports [Ioannidis

et al., 2001]. Meta-analysis provides one approach
to demonstrate replication validity [Ioannidis
et al., 2002]. For certain diseases, such as breast
and prostate cancers, consortia have been estab-
lished to coordinate analyses and pool results,
thereby creating huge datasets for hypothesis
testing, replication, and estimation (http://epi.
grants.cancer.gov/BPC3/cohorts.html). For asso-
ciations that can be studied by meta-analysis or
consortia, these approaches might demonstrate
replication validity, and thereby resolve the multi-
ple comparisons issue. However, for less common
diseases, and for common or uncommon diseases
arising in special populations, it may not be
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practical to assemble such large studies. There-
fore, especially in these situations, as in general, a
challenge for investigators is to honestly assess the
statistical significance of a candidate gene associa-
tion hypothesized a priori, in the context of a single
study, using the most powerful available statistical
test that maintains control of the overall gene-
wide false-positive rate.

An example of such a study is provided by the
Shanghai Biliary Tract Cancer Study (SBTCS)
[Sakoda et al., 2006]. The SBTCS is investigating
the etiology of biliary tract cancer among residents
of Shanghai China, a region where these compara-
tively rare tumors are increasing in incidence
[Hsing et al., 1998]. Using a population-based
case-control design, the SBTCS study enrolled
more than 95% of all incident cases arising over
the period from June 1997 through May 2001. The
study enrolled 627 biliary tract cancer cases and
959 age- and sex-matched control subjects. Of
them, 411 cases and 786 controls provided ade-
quate blood samples for genetic testing. Among
the 411 cases were 237 gallbladder, 127 bile duct,
and 47 ampulla of Vater cancers; genetic associa-
tions with each type of biliary tract cancer are of
interest. However, with the available numbers of
cases, efforts to identify candidate genes with
moderate effects will encounter issues of power
and sample size. Therefore, it is desirable to use
the most powerful available statistical tests.

Several analytical approaches are available to
test the hypothesis that any variant in a candidate
gene is associated with disease. In addition to
haplotype analysis, other gene-wide tests include
SNP-based tests, and omnibus tests [Rosenberg
et al., 2006] that combine SNP and haplotype
analysis. Standard tests can be conducted using
output from existing computer programs. How-
ever, resampling-based tests that account for
correlation between test statistics should control
the false-positive rate at the nominal level and
have higher power. A key question is whether the
gain in power is large enough to justify the
computational burden.

In this report, we study the performance of
some resampling-based tests in simulations con-
ducted over two panels of candidate genes. One
panel includes nine candidate genes implicated in
diabetes and autoimmune disorders, and haplo-
types observed in a population of European
ancestry. The other panel includes six candidate
genes in the chronic inflammation pathway, and
haplotypes observed in an Asian population (the
SBTCS). As we show, the proposed methods offer

gains in power that appear large enough to be
useful in practice. We illustrate the testing
procedures using data from the SBTCS. A techni-
cal appendix presents computational details.

METHODS

Each of the statistical tests proposed here are
‘‘gene-based’’ association tests [Neale and Sham,
2004] that consider whether any tested ‘‘features’’
in a candidate gene—SNPs, haplotypes, or both—
are associated with disease. Gene-based tests are
designed to control the family-wise type I error
rate for the complete null hypothesis that no
tested feature of a candidate gene is associated
with disease.

TEST PROCEDURES

An investigator with SNP data in hand can use a
number of analytical approaches, including the
following:

1. Test each SNP variant marginally without any
adjustment for multiple comparisons.

2. Test each SNP variant marginally, adjusting for
multiple comparisons using the Simes Global
Test [Simes, 1986], which provides a more
powerful alternative to a Bonferroni test.

3. Test each SNP variant marginally, adjusting for
multiple comparisons with the Bonferroni test
using the number of independent tests ob-
tained from the spectral decomposition of
matrices describing the pair-wise linkage dis-
equilibrium (LD) between SNPs [Nyholt, 2004;
Nicodemus et al., 2005], or the number of LD
blocks. The later method of adjustment may not
control the type I error rate under high-LD
scenarios [Nicodemus et al., 2005] and is not
considered further here.

4. Perform a haplotype analysis to determine
whether the haplotype frequency distribution
differs between cases and controls, accounting
for uncertainty about the linkage phase.

5. Combine approaches 2 and 4, using a Bonfer-
roni correction to correct for the fact that two
tests were conducted; twice the smaller of the
two raw p-values is the test statistic [Rosenberg
et al., 2006].

Approach 1 does not control the type I error rate
and is highly prone to false positives [Nicodemus
et al., 2005; Rosenberg et al., 2006]. Approaches
2–5 do control the type I error rates, and therefore
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provide valid gene-based tests. Approaches 1–3
require standard output from logistic regression
[Prentice and Pyke, 1979]. Given M SNPs in a
candidate gene, one computes M marginal like-
lihood ratio tests. For example, one might use a
trend test [Armitage, 1955] that considers the
number of copies of a variant SNP. For Approach
4, several haplotype frequency tests (HFTs) have
been proposed [Zhao et al., 2000; Fallin et al., 2001;
Schaid et al., 2002; Epstein and Satten, 2003]
and computation tools for haplotype analysis
are available, including SAS PROC HAPLOTYPE
[SAS Institute Inc., 2002], HAPLO.SCORE
[R Development Core Team, 2004], PHASE
[Stephens et al., 2001], and the software provided
by Satten [Epstein and Satten, 2003]. HFTs can be
adjusted for covariates [Li et al., 2003; Zhao et al.,
2003; Lake et al., 2003]. Approach 5 requires only
the two summary p-values obtained for Analyses
2 and 4 and simple arithmetic; therefore, we call
it the ‘‘simple’’ omnibus test.

The Simes Global Test (Approach 2) has com-
paratively high power when disease susceptibility
is conferred by a SNP, but it may have a
substantial false-negative rate if disease suscept-
ibility is conferred by a haplotype [Rosenberg
et al., 2006]. Conversely, haplotype analysis
(Approach 4) has comparatively high power when
disease susceptibility is conferred by a haplotype,
but it may have a substantial false-negative rate if
disease susceptibility is conferred by an SNP. The
simple omnibus test (Approach 5) tracks the more
powerful of the SNP-based or haplotype-based
analysis, which is generally unknown. In the next
section, we show how to extend Approaches 2, 4,
and 5 so that each continues to control the type I
error rate but has higher power. Specifically, the
Simes Global Test may not fully exploit the extent
of LD between SNPs; some applications of
haplotype analysis may not take advantage of
the possibility that there is only limited haplo-
type diversity; the simple omnibus test does not
account for correlation between the base tests. The
tests described below—the min P test [Westfall
and Young, 1993; Westfall et al., 2002], the
‘‘directed’’ HFT, and the resampling-based omni-
bus tests—overcome these respective limitations.

THE min P TEST

We evaluate whether the min P test provides
more statistics power than the Simes Global Test
(Approach 2), and if so, by how much. The min P
test was first suggested by Westfall et al. [Westfall

and Young, 1993; Westfall et al., 2002]. Both the
min P test and the Simes Global Test consider
p-values for a set of SNP-disease associations
one-at-a-time, marginally over all other SNPs.
With the min P test, inference is based on the
permutation distribution of the minimum of
the ordered p-values, which takes the correla-
tions into account. In contrast, the Simes Global
Test uses a non-iterative procedure to adjust
the minimum observed p-value for multiplicity.
The maximum w2 test [de Bakker et al., 2005],
which compares the maximum of the marginal
w2 test statistics from each SNP with the distribu-
tion of such statistics under null hypothesis using
permutation, is closely related to the min P test
described here.

Suppose there are M SNPs in a candidate gene,
and the marginal test for the jth SNP yields an
observed p-value pj. We denote the min P test
statistic as

WYZ ¼ min
1�j�M

pj:

Under the complete null hypothesis, the case-
control indicators can be permuted B times to
generate a set of permutation samples. Let p�jb be
the p-value for the jth SNP in the bth permutation
sample, obtained by shuffling case-control indi-
cators. The permuted min P statistic is given by

WYZ�b ¼ min
1�j�M

p�jb

and the permutation-based p-value for the min P
test WYZ, called pWYZ, is the proportion of

WYZ�b
� �B

b¼1
that are equal to or smaller than the

observed min P statistic WYZ [Westfall and
Young, 1993]. At least B 5 1,000 permutated
datasets are needed to obtain a reasonably
accurate estimate of pWYZ. Missing SNP genotype
data are accommodated; each marginal test makes
use of all subjects with available data for that SNP.

DIRECTED AND GLOBAL HFTS

Current laboratory methods do not permit
large-scale resolution of the gametic phase in
studies of unrelated subjects. Therefore, for each
individual who is heterozygous for more than one
SNP in a candidate gene, the number of copies
of each variant SNP allele is known, 0, 1, or 2, but
it is not known which SNP alleles are present
on each chromosome. Under the assumption of
Hardy-Weinberg Equilibrium (HWE), haplotype
frequencies can be estimated from unphased SNP
genotype data by maximum likelihood using the
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EM algorithm [Dempster et al., 1977; Excoffier
and Slatkin, 1995]; missing SNP genotype data can
be accounted for in the likelihood calculations.

An HFT compares the reconstructed haplotype
frequency distributions in cases versus controls.
A global HFT, HFTG, compares the frequencies of
all haplotypes that are inferred to be present
in cases or controls and tests for significance using
a permutation test [Fallin et al., 2001]. In contrast,
a ‘‘directed’’ HFT considers frequencies only for
comparatively common haplotypes, say, those
with an estimated frequency of 5% or higher
in controls. All the less common haplotypes
are pooled into an ‘‘other’’ category. Because the
frequencies of the common haplotypes can be
estimated stably, we construct a directed test,
HFTD, using a Wald-type test statistic and closed-
form expressions for the variance-covariance
matrix of the case-control differences in haplotype
frequencies (Appendix). Here, we evaluate
whether a directed test provides more statistical
power than a global test in selected scenarios,
and if so, by how much. As a benchmark in simu-
lation studies, we also evaluate HFTI, an ideal
HFT that contrasts the frequencies of the common
haplotypes using phase-known data.

RESAMPLING-BASED OMNIBUS TESTS

We attempt to make the simple omnibus test
(Approach 5) more powerful by using base tests
with potentially greater power, and by accounting
for correlation between the base tests. As with the
simple omnibus test, we combine a SNP-based
test and a haplotype-based test. For the SNP-
based test, we replace the Simes Global Test by the
min P test statistic, and for the haplotype-based
test, we consider both the directed and the global
HFT. Therefore, we proposed a version of the
omnibus test statistic with

OMNI ¼ min pHFT; pWZY
� �

where pHFT is the p-value of HFTD or HFTG,
and pWZY is the p-value of the min P statistic. The
distribution of this omnibus test statistic can be
estimated from its permutation distribution. For
the bth permuted dataset, one can conduct both
the SNP-based test and the haplotype-based test,
yielding p-values pWZY�

b and pHFT�
b : Here pWZY�

b is
the proportion of WYZ�b0

� �B

b0¼1
that are equal to or

smaller than WYZ�b . For the directed HFT, pHFTD
�

b
can be obtained from a central w2 distribution.
For the global HFT, pHFTG

�

b is the proportion of
HFTG;b0

�
� �B

b0¼1
that are equal to or greater than

HFTG;b
�. The bth permuted value of the resam-

pling-based omnibus test statistic is

OMNI�b ¼ min pHFT�
b ; pWZY�

b

� �
:

The p-value for the omnibus test OMNI, called
pOMNI, can be estimated by the proportion of

OMNI�b
� �B

b¼1
that is equal to or smaller than the

test statistics OMNI. Note that a single set of
permutation samples is used to compute each test,
similar to an algorithm used for micro-array
studies [Ge et al., 2003].

CANDIDATE GENE PANELS
AND SIMULATION STUDIES

To investigate the performance of the proposed
methods, we considered two panels of candidate
genes (Table I). The first panel (the ‘‘Johnson
Panel’’) includes CASP8, CASP10, CFLAR, CTLA4,
GAD2, H19, INS, SDF1, and TCF8 (122 SNPs were
genotyped, with 59 common SNPs in nine genes)
in 135 kb of DNA [Johnson et al., 2001]. In the
Johnson Panel, on average, there are 6.6 common
SNPs (with frequency Z5%) and 4.9 common
haplotypes (with frequency Z5%) per gene.

The second panel (the ‘‘SBTCS Panel’’) includes
IL10, IL1A, IL1B, IL4, PTGS2, and TNF; these six
genes are members of the chronic inflammation
pathway. The SBTCS Panel was constructed as
follows. For each gene, 6, 3, 3, 5, 8, and 5 SNPs
respectively from the SNP500Cancer database
(http://snp500cancer.nci.nih.gov) were selected
for genotyping in 44 kb of DNA. Genomic DNA
was extracted from buffy coat samples of cases
and controls. SNPs were genotyped using TaqMan
assays at the Core Genotyping Facility (http://
cgf.nci.nih.gov) of the National Cancer Institute
(Rockville, MD, USA). The numbers of genotyped
SNPs in each candidate gene with any variation
in cases or controls were 3, 2, 3, 5, 5, and 5,
respectively. In these 23 SNPs with variation, the
mean fraction of missing genotype data was 1.2%
(range: 0.3–3.6%). Genotype frequencies in the
population controls were in HWE. Twenty-one of
these 23 SNPs had a minor allele frequency Z5%.
The mean number of common SNPs per gene was
3.5, and the mean number of common haplotypes
per gene was 2.5. Haplotypes and their corres-
ponding frequencies are shown in Figure 1. Using
genotype data from controls, the consistent haplo-
types were enumerated, and the corresponding
haplotype frequencies in the SBTCS population
were estimated using the EM algorithm.
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In simulation studies for each gene in both
panels, cohorts of 100,000 individuals were gene-
rated with haplotypes randomly assigned assum-
ing HWE. Then for each individual, disease status
was assigned according a Bernoulli random
number with probability

PðDisease ¼ 1jxÞ ¼
expðb0 þ b1xÞ

1þ expðb0 þ b1xÞ

where x equals the number of copies of the disease
susceptibility SNP or haplotype, and b1 is the
logarithm of the relative risk. The baseline para-
meter b0 was 0.01. Finally, case-control samples
were obtained by randomly selecting n0 5 300
controls and n1 5 300 cases from each cohort
[Rosenberg et al., 2006]. Replicate datasets were
created, both under the null, and with each
common SNP and haplotype (with frequency
greater than 5%) in turn associated with disease
according to a codominant logistic model with a
relative risk of 1.5 per copy of each associated
SNP or haplotype. Type I error rates and power
were computed from 1,000 replicate studies.
For the resampling-based tests, 1,000 permutation
samples per replicate study were used to estimate
the empirical distribution function of the test
statistics under the null.

RESULTS

SIMULATION RESULTS

The proposed gene-based tests have the correct
type I error rate (Table I): for each gene in both
panels, the percentage of false positives is close to
the nominal level of 0.05. In particular, we
observed that Nyholt’s approach controls the
Type I error rate at the nominal level. In contrast,
despite the extensive LD between SNPs, the type I
error rate is very high if each SNP is tested
without any adjustment for multiplicity. The
percentage of false positives (computed by simu-
lating under the complete null) ranged from 8%
to 23% over genes in the SBTCS Panel (with 3.5
common SNPs/gene on average), and from 18%
to 45% in the Johnson Panel (with 6.8 common
SNPs/gene on average (data not shown)).

The min P test has higher power than the Simes
Global Test (Table II). Table II shows the mean
power for the min P test, and the Simes Global
Test, evaluated gene-by-gene in scenarios where
each common SNP and haplotype (frequency
45%) in turn was associated with disease. For
example, in CASP8, the power of the min P test
and the Simes Global Test was evaluated for seven
common SNPs and five common haplotypes.

TABLE I. Type I error rates under the complete null hypothesis

GENE Nyholt min P Global HFT Directed HFTa

Omnibus test
(min P1Global

HFT)

Omnibus test
(min P 1Directed

HFTa)

Johnson Panel
CASP8 0.042 0.051 0.045 0.046 0.054 0.045
CASP10 0.039 0.055 0.044 0.039 0.041 0.053
CFLAR 0.050 0.050 0.046 0.036 0.046 0.049
CTLA4 0.054 0.050 0.032 0.033 0.038 0.055
GAD2 0.039 0.054 0.052 0.055 0.058 0.048
H19 0.041 0.054 0.055 0.039 0.054 0.043
INS 0.042 0.051 0.052 0.038 0.053 0.042
SDF1 0.036 0.051 0.050 0.040 0.048 0.042
TCF8 0.044 0.049 0.052 0.045 0.044 0.039

SBTCS Panel
IL10 0.055 0.046 0.049 0.048 0.051 0.049
IL1A 0.054 0.051 0.052 0.047 0.055 0.048
IL1B 0.042 0.048 0.053 0.042 0.045 0.044
IL4 0.056 0.054 0.046 0.053 0.048 0.047
PTGS2 0.048 0.043 0.055 0.040 0.052 0.042
TNF 0.059 0.047 0.046 0.049 0.044 0.051

Type I error rates were estimated from B 5 1,000 replications of studies with n1 5 n0 5 300 cases and controls under the null hypothesis.
The nominal a level for each procedure was 0.05.
aFor the Directed HFT, haplotypes in the population with frequency greater than 5% were used to define the Wald test.
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On average over these 12 scenarios, the min P test
had 3.0 percentage points higher power (61.2
versus 58.2 percent power, for min P and Simes
Global Test, respectively). Averaged over genes, the
power of the min P test versus the Simes Global
Test was 2.2 percentage points higher in the
Johnson Panel and 2.0 percentage points higher in
the SBTCS Panel. We also observed that the power
of Nyholt’s approach lies in between Simes Global
Test and the min P test (data not shown).

For haplotype analysis, HFTD had higher power
than HFTG, when disease susceptibility was
conferred by a haplotype with frequency Z5%
(Fig. 2; Johnson Panel with disease susceptibility
conferred by each haplotype). Indeed, HFTD was
nearly as powerful as the ideal test HFTI.
Compared to HFTI, on average in Figure 2, HFTD

had 3.8 percentage points less power. This gap
in power reflects the impact of phase ambiguity
on analyses restricted to the common haplotypes.

Comparing HFTD to HFTG (both tests based on
unphased data), on average, the directed test had
6.6 percentage points higher power in the Johnson
Panel, and 4.7 percentage points higher power
in the SBTCS Panel (Table II). The gap in power
between the global and directed tests reflects the
additional degrees of freedom that are incorpo-
rated into the global test. The directed and global
tests had similar power for the CFLAR gene;
three of the four haplotypes in this gene have
a frequency Z5%, so little difference is expected
between the two tests.

The resampling-based omnibus tests dominated
the simple omnibus test, regardless of whether

Fig. 1. Haplotype structures in the SBTCS Panel. Panels correspond to genes, rows to haplotypes, and columns to SNPs. The y-axis
labels show common haplotype frequencies. Rare haplotypes (un-labeled) are pooled in a haplotype analysis. The x-axis labels

show SNP allele frequencies.
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disease susceptibility was conferred by an SNP
or by a haplotype (Fig. 3; SBTCS Panel). Here,
the resampling-based omnibus test combines
min P and HFTD, and the simple omnibus test
combines the Simes Global Test and HFTD using
a Bonferroni correction. On average, the resam-
pling-based omnibus test had 5.8 percentage
points higher power in the SBTCS Panel and 5.6
percentage points higher power in the Johnson
Panel (Table II).

Overall, the omnibus test combining min P and
HFTD provided higher statistical power for tests
of the ‘‘common-disease, common-variant’’ hypo-
thesis than the omnibus test combining min P and
HFTG. For example, in the Johnson Panel with
disease susceptibility conferred by each haplo-
type, on average, the omnibus test incorporating
HFTD had 5.2 percentage points higher power
than the omnibus test incorporating HFTG, and
the maximum gain in power was 27 percentage
points for the gene H19 which has 15 total
haplotypes but only five common ones.

Figures 4 and 5 show power curves for the
omnibus test combining min P and HFTD, applied
to the two gene panels. These data show that

haplotype analysis is not necessarily the most
powerful approach to detect association conferred
by a common haplotype. In every gene in the
Johnson Panel (Fig. 4), at least one haplotype
exists for which the min P test was more powerful.
To a lesser extent, this phenomenon was also
observed in the SBTCS Panel (Fig. 5, IL4 and TNF).
Conversely, the min P test was always more
powerful when disease susceptibility was con-
ferred by a common SNP (data not shown). In all
scenarios considered, the resampling-based omni-
bus test closely tracked the more powerful of the
two component tests. For other choices of relative
risks (for example, RR 5 1.25 and 2.0), we obser-
ved similar patterns of power gains to the RR 5

1.5 scenarios (data not shown).

APPLICATION TO THE SBTCS

In the SBTCS, the prostaglandin-endoperoxide
synthase 2 (PTGS2) gene is of particular interest.
PTGS2 encodes for one isoform of the enzyme
PTGS, also commonly known as cycloxygenase
(COX), which converts arachidonic acid into
prostaglandins. Given that PTGS2 is induced by

TABLE II. Summary of average power for min P, HFTD, and resampling-based omnibus tests in studies with 300 cases
and controls

Average power (percentage points)

SNP Tests Haplotype frequency tests Omnibus testsa

min P Simes HFTD HFTG Resampling Simple

Johnson Panelb

CASP8 61.2 58.2 50.1 37.6 52.3 47.6
CASP10 61.7 60.4 53.8 50.2 58.1 52.8
CFLAR 73.3 73.2 69.3 69.9 72.4 67.5
CTLA4 52.5 51.2 34.5 31.8 40.0 34.1
GAD2 58.6 56.8 59.5 55.4 63.5 58.1
H19 71.4 66.4 49.7 33.8 55.5 50.1
INS 61.3 58.8 58.8 46.9 62.0 55.7
SDF1 57.0 56.9 43.4 39.0 50.9 44.2
TCF8 49.9 47.6 33.7 28.3 38.7 33.8

SBTCS Panel
IL10 61.7 60.1 60.9 58.4 63.1 56.9
IL1A 68.5 67.4 69.0 68.2 69.4 62.6
IL1B 89.4 89.9 90.4 82.3 90.0 86.7
IL4 62.0 58.6 54.5 42.3 61.8 54.7
PTGS2 38.3 34.7 37.0 32.9 41.1 35.8
TNF 46.8 43.4 44.8 44.0 48.7 42.4

aThe resampling omnibus tests combine min P and HFTD, and the simple omnibus test is the Bonferroni correction applied to Simes Global
Test and HFTD.
bIn the Johnson Panel, the haplotype frequency tests HFTD and HFTG, and the resampling and simple omnibus tests were compared
in scenarios where each common haplotype in turn conferred susceptibility (RR 5 1.5 per copy); all other comparisons were evaluated
over scenarios where each common SNP and haplotype (frequency 45%) in turn conferred susceptibility.
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proinflammatory and mitogenic factors and over-
expressed in malignant biliary tissue, it was
hypothesized that variants in the PTGS2 gene
may alter the expression or function of its encoded
enzyme, thereby modulating inflammatory pro-
cesses that influence cancer susceptibility.

Table III reports marginal SNP-based analysis
and haplotype analysis, comparing 127 bile duct
cancer cases to 786 population controls. By SNP
analysis, the SNP 4: T4C allele showed a
significant association with bile duct cancer
(nominal p-value of 0.0041), with a relative risk
of 1.63 per copy of the C allele (95% confidence
interval: 1.17–2.25). The p-value of Simes Global
Test was 0.0205, and the p-value of the min P
test was 0.0145 (based on 10,000 permutations);

both of these tests adjust for multiplicity over
the SNPs.

To construct a directed HFT, we focused on the
common haplotypes with a frequency greater than
1% in the population controls. Four common
haplotypes (shown in Table III) were used to
construct the directed HFT, which yielded a w2 test
statistic of 10.96 on 4 degrees of freedom, and
p-value of 0.027, indicating a statistically signi-
ficant difference in the frequencies of the common
haplotypes in cases versus controls. The frequency
of the most common haplotype (00000) was 79.6%
in the population controls, versus 72.0% in the
cases (Table III). For haplotypes (00010) and
(01110), the estimated frequencies were 11.4%
and 4.7% in the population controls and 15.0%

Fig. 2. Power curves of haplotype frequency tests for the Johnson Panel when disease susceptibility is conferred by a haplotype with a
codominant effect. Panels correspond to genes, abscissas to susceptibility haplotype (arranged by frequency), and ordinates to power.

Values of the power were determined from B 5 1,000 replications of studies with n1 5 n0 5 300 cases and controls. Power curves for ideal

phase-known HFT, directed HFT, and global HFT are shown.
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and 7.1% in cases. In contrast, the global HFT
considering 11 haplotypes (eight haplotypes
shown in Figure 1, and three rare haplotypes
inferred in the cases) yielded a non-significant
result with a p-value of 0.1236.

If one uses the simple omnibus test to combine
the Simes Global Test and the directed HFT, the
p-value is 0.041, which equals twice the smaller
of 0.0205 (Simes Global Test) and 0.027 (HFTD).
A smaller p-value of 0.015 is obtained using
the resampling-based omnibus test that com-
bines min P and HFTD. This p-value accounts
for the fact that five SNPs and four common
haplotypes were considered using two analytical
approaches. The results indicate that SNP 4 is
positively associated with bile duct cancer, as are
the haplotypes (00010) and (01110) that contain it.

The difference between the p-values obtained
using the simple omnibus test (0.041) and the
resampling-based omnibus test (0.015) is impor-
tant. Consider a planned analysis to test each of the
six genes in the SBTCS Panel for association with
bile duct cancer, adjusting for multiplicity over the
panel using the Benjamini-Hochberg False Discov-
ery Rate (FDR) [Benjamini and Hochberg, 1995]. In
the worst-case scenario, the simple omnibus test
would yield an FDR-adjusted q-value for PTGS2 of
0.246 (6� 0.041), whereas the resampling-based
omnibus test would yield an FDR-adjusted q-value
of 0.09 (6� 0.015). Hence, PTGS2 would be
‘‘discovered’’ at the 10% level using the resam-
pling-based omnibus test but not with the simple
omnibus test. A similar argument holds if one
planned to apply a Bonferroni correction.

Fig. 3. Power curves of omnibus tests for the SBTCS Panel when disease susceptibility is conferred by an SNP or a haplotype with

a codominant effect. The panel design is similar to Figure 2, except that abscissas include scenarios where SNP or haplotypes

are associated with disease, and the range of abscissas for IL1B gene is from 0.46 to 0.52. Power curves for resampling-based omnibus
test and simple omnibus test are shown.
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DISCUSSION

To avoid false-negative results in a candidate
gene analysis, it makes good sense to consider
both haplotype analysis and the marginal associa-
tions of disease with each SNP. However, the false-
positive rate can be very high if multiple SNPs are
analyzed without any adjustment for multiple
comparisons, ranging from 8% to 45% across the
15 genes considered here. These false-positive
rates pertain to analysis of a single candidate gene.
Of course, the chance of obtaining at least one
false-positive gene increases rapidly with the
number of candidate genes.

Gene-based test provide a means to avoid
such false positives. ‘‘Off-the-shelf’’ methods can
be applied using widely available software. How-
ever, the resampling-based approaches investi-

gated here offer genuine gains in power (Table II).
These gains were achieved in part by accounting
for the correlation between test statistics. Overall,
we recommend the resampling-based omnibus
test that combines the min P test with a directed
HFT. This test makes use of all available genotype
data, accounts for phase ambiguity in the haplo-
type analysis, adjusts for multiplicity over all
SNPs and haplotypes considered using two
analytical approaches, and closely tracks the more
powerful of the component tests. Of course, in a
particular study, one cannot know whether
the resampling-based methods are providing a
modest or substantial gain in power. However,
our results suggest that these new approaches
should be useful in practice. The procedures
operated similarly in both panels considered,
and the SBTCS Panel was derived from widely

Fig. 4. Power curves of omnibus tests for the Johnson Panel when disease susceptibility is conferred by a haplotype with a co-dominant

effect. The panel design is the same as in Figure 2. Power curves for min P test, directed HFT, and resampling-based omnibus test

are shown.
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studied genes and SNPs in the SNP500Cancer
database.

A standalone computer program that imple-
ments these tests is available from B.E.C upon
request. Limitations of our study should be noted.

First, both min P and the resampling-based omni-
bus tests may have lengthy computation times,
depending on the problem size. Second, the
operating characteristics of the tests in more
complicated models, such as models where

Fig. 5. Power curves of omnibus tests for the SBTCS panel when disease susceptibility is conferred by a haplotype with a co-dominant

effect. The panel design is the same as in Figure 2. Power curves for min P test, directed HFT, and resampling-based omnibus test
are shown.

TABLE III. SNP and haplotype analysis for SBTCS case-control study of bile duct cancer and variants in PTGS2

SNP Analysis Haplotype Analysis

SNPa ORb 95%CI Raw-p Haplotype
Controls:
frequency

Cancer cases:
frequency

SNP1: G4C 1.48 0.79–2.80 0.2395 (00000) 0.7955 0.7182
SNP2: T4G 1.51 0.91–2.49 0.1214 (00010) 0.1113 0.1502
SNP3: T4C 1.56 0.90–2.68 0.1239 (01110) 0.0471 0.0709
SNP4: T4C 1.63 1.17–2.25 0.0041 (10000) 0.0356 0.0407
SNP5: C4T 1.03 0.23–4.67 0.9664 Other haplotypes 0.0096 0.0200

aSNP1: Ex3 �8 G4C; SNP 2: IVS5 �275 T4G; SNP3: IVS7 1111 T4C; SNP4: Ex10 1837 T4C; SNP5: Ex10 �90 C4T.
bBased on logistic regression with a co-dominant model.
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association is due to multiple SNPs or haplotypes,
or is induced by gene-environment interaction,
have yet to be explored. Third, it is unclear
by how much the power of the tests is diminished
by the omission of SNPs within a gene that are
not genotyped.

Nonetheless, for investigators with data in hand
to address a priori hypotheses, the approaches we
describe can be recommended. Although we did
not present the details, each test can be extended
to account for covariates, by using standard
multiple logistic regression (min P) or by using
for example the approach of Lake et al. [2003]
(directed HFT). The enhanced tests may be
particularly useful for genetic associations that
appear to be of borderline significance using
standard approaches. However, even if results
are significant using standard tests, as illustrated
by our analysis of data from the SBTCS, it may still
be desirable to use the more powerful resampling-
based approaches, for example, if the summary
p-value for a single gene is to be adjusted for
multiplicity over a panel of candidate genes.
Finally, even in the largest meta-analysis of
individual patient data or consortia study, the
numbers quickly become sparse for subgroup
analysis. Hence, the methods we propose may
also be useful for subgroup analysis within large
studies.
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APPENDIX

DIRECTED HAPLOTYPE ANALYSIS

Suppose the haplotype frequencies are esti-
mated using the EM algorithm [Excoffier and
Slatkin, 1995]. The corresponding variance-covar-
iance matrices for the estimated haplotype fre-
quencies can be estimated by taking derivates of
the observed log likelihood function at the
solution. Let C be the total number of inferred
haplotypes and

F̂ ¼ ðf̂1; . . . ; f̂CÞ

be the maximum likelihood estimate of the
haplotype frequencies given the genotype data
G. Without lost of generality, we suppose that
f1 ¼ ð1�

PC
c¼2 fcÞ40. For the jth genotype gj with

frequency pj and observed counts nj, its contribu-
tion to the log-likelihood function is given by
lj 5 nj log(pj). If gj is the genotype consistent with
homozygous haplotype pair (h1h1), its contri-
bution to the information matrix derives from
lj ¼ 2nj logð1� f2 � � � � � fcÞ and is

q2lj

qfsqft
¼ �2

nj

f2
1

for s41; t41:

When gj is consistent with haplotype pairs (hshs),
for s41, we have

q2lj

qf2
s

¼ �2
nj

f2
s

for all s41:

If gj is consistent with haplotype pair (h1hs), its
contribution to the information matrix derives
from lj ¼ nj logf� � � þ 2ð1� f2 � � � � fs � � � � ft � � �

�fCÞfs þ � � �g and is

q2lj

qf2
s

¼ �4
nj

p2
j

ðf1 � fsÞ
2
� 4

nj

pj

q2lj

qf2
t

¼ �4
nj

p2
j

f2
s s 6¼ t

q2lj

qfsqft
¼ 4

nj

p2
j

fsðf1 � fsÞ � 2
nj

pj
:

When gj is consistent with haplotype pair (hsht),
s6¼t, s41, t41, we have

q2lj

qf2
s

¼ �4
nj

p2
j

f2
t and

q2lj

qfsqft
¼ �4

nj

p2
j

fsft þ 2
nj

pj
:

The corresponding variance-covariance matrix
for the (C�1) estimated haplotype frequencies
ðf̂2; . . . ; f̂CÞ can be consistently estimated by

X̂
ðC�1Þ
¼ �

q2l

qfsqft

� ��1

for s41; t41:

To construct a directed HFT, let F̂1 and F̂0 be the
estimated frequencies of the PrC�1 haplotypes
of interest in the cases and the controls, respec-
tively. The corresponding variance-covariance
matrices can be estimated from the corresponding

elements of
P̂

1;ðC�1Þ and
P̂

0;ðC�1Þ by
P̂

1;P andP̂
0;P. Denote the difference in frequencies

between cases and controls by D̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n0=ðn1 þ n0Þ

p
ðF1 � F0Þ; where n1 and n0 are

number of cases and controls. Under H0: D5 0,
the test statistic D̂ has asymptotic normal distribu-
tion with mean 0 and variance

P̂
P ¼

P̂
1;P þ

P̂
0;P:

Therefore, the Wald test statistic is given by

HFTD ¼ D̂0
X̂

P

�1

D̂ �!
d

w2
P:
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